
SPRING 2021: MATH 147 QUIZ 5 SOLUTIONS

Each question is worth 5 points. You must justify your answer to receive full credit.

1. Find the volume of the region in R3 bounded above by the graph of z = sin(πy/2)+x and bounded below
by the parallelogram in the xy-plane having vertices (0,0), (2,0), (1, 2), (3,2).

Solution. The region in question is bounded on the left by x = y
2 and on the right by x = y

2 + 2, and is
bounded above by y = 0 and y = 2.
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2. State why it is difficult to evaluate
∫ 1
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x2+y2 dx dy, and then change the order of integration to evaluate
the indicated double integral. (This is the original HW problem.)

1



Solution. Integrating with respect to x first is more difficult, since a simple u-substitution involving x is not
available. However, changing the order of integration, we have:∫ 1
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dx (via u− substitution with u = y2 + x2)
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Note: The solution above proceeds in the way that the text by Hartman would expect you to work this
problem (# 21 in Section 13.2, in Hartman). However, there is something subtle that is being ignored in
this problem, namely, that the integrand 2y

x2+y2 is not defined at (0,0). In fact, lim(x,y)→(0,0)
2y

x2+y2 does not
exist. The given integral is an example of an improper double integral that converges, something we will
talk about in class, that is not covered in Hartman’s book.
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